Nuprl Lemma : rel_plus_closure 11,40

T:Type, RR2:(TT).
Trans(T;_1,_2.R2(_1,_2))  (xy:T. (x R y (x R2 y))  (xy:T. (x R^+ y (x R2 y)) 
latex


Definitionsf(a), x f y, P  Q, False, A, x:AB(x), rel_exp(T;R;n), a < b, , -n, n+m, n - m, s = t, t  T, x:AB(x), x:A  B(x), P & Q, P  Q, {T}, SQType(T), s ~ t, left + right, P  Q, Dec(P), {x:AB(x)} , , x:AB(x), R^+, x(s1,s2), Trans(T;x,y.E(x;y)), Type, , Void, A  B, , b, b, , (i = j), Unit, #$n
Lemmaseqtt to assert, eqff to assert, iff transitivity, assert of bnot, not functionality wrt iff, assert of eq int, eq int wf, bool wf, bnot wf, not wf, assert wf, rel exp wf, le wf, nat plus properties, decidable int equal, rel exp one

origin