Nuprl Lemma : rel_plus_closure
11,40
postcript
pdf
T
:Type,
R
,
R2
:(
T
T
).
Trans(
T
;
_1
,
_2
.
R2
(
_1
,
_2
))
(
x
,
y
:
T
. (
x
R
y
)
(
x
R2
y
))
(
x
,
y
:
T
. (
x
R
^+
y
)
(
x
R2
y
))
latex
Definitions
f
(
a
)
,
x
f
y
,
P
Q
,
False
,
A
,
x
:
A
.
B
(
x
)
,
rel_exp(
T
;
R
;
n
)
,
a
<
b
,
,
-
n
,
n
+
m
,
n
-
m
,
s
=
t
,
t
T
,
x
:
A
B
(
x
)
,
x
:
A
B
(
x
)
,
P
&
Q
,
P
Q
,
{
T
}
,
SQType(
T
)
,
s
~
t
,
left
+
right
,
P
Q
,
Dec(
P
)
,
{
x
:
A
|
B
(
x
)}
,
,
x
:
A
.
B
(
x
)
,
R
^+
,
x
(
s1
,
s2
)
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Type
,
,
Void
,
A
B
,
,
b
,
b
,
,
(
i
=
j
)
,
Unit
,
#$n
Lemmas
eqtt
to
assert
,
eqff
to
assert
,
iff
transitivity
,
assert
of
bnot
,
not
functionality
wrt
iff
,
assert
of
eq
int
,
eq
int
wf
,
bool
wf
,
bnot
wf
,
not
wf
,
assert
wf
,
rel
exp
wf
,
le
wf
,
nat
plus
properties
,
decidable
int
equal
,
rel
exp
one
origin